|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:124788 |
|
|
- loss:GISTEmbedLoss |
|
|
base_model: Alibaba-NLP/gte-multilingual-base |
|
|
widget: |
|
|
- source_sentence: 其他机械、设备和有形货物租赁服务代表 |
|
|
sentences: |
|
|
- 其他机械和设备租赁服务工作人员 |
|
|
- 电子和电信设备及零部件物流经理 |
|
|
- 工业主厨 |
|
|
- source_sentence: 公交车司机 |
|
|
sentences: |
|
|
- 表演灯光设计师 |
|
|
- 乙烯基地板安装工 |
|
|
- 国际巴士司机 |
|
|
- source_sentence: online communication manager |
|
|
sentences: |
|
|
- trades union official |
|
|
- social media manager |
|
|
- budget manager |
|
|
- source_sentence: Projektmanagerin |
|
|
sentences: |
|
|
- Projektmanager/Projektmanagerin |
|
|
- Category-Manager |
|
|
- Infanterist |
|
|
- source_sentence: Volksvertreter |
|
|
sentences: |
|
|
- Parlamentarier |
|
|
- Oberbürgermeister |
|
|
- Konsul |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_accuracy@20 |
|
|
- cosine_accuracy@50 |
|
|
- cosine_accuracy@100 |
|
|
- cosine_accuracy@150 |
|
|
- cosine_accuracy@200 |
|
|
- cosine_precision@1 |
|
|
- cosine_precision@20 |
|
|
- cosine_precision@50 |
|
|
- cosine_precision@100 |
|
|
- cosine_precision@150 |
|
|
- cosine_precision@200 |
|
|
- cosine_recall@1 |
|
|
- cosine_recall@20 |
|
|
- cosine_recall@50 |
|
|
- cosine_recall@100 |
|
|
- cosine_recall@150 |
|
|
- cosine_recall@200 |
|
|
- cosine_ndcg@1 |
|
|
- cosine_ndcg@20 |
|
|
- cosine_ndcg@50 |
|
|
- cosine_ndcg@100 |
|
|
- cosine_ndcg@150 |
|
|
- cosine_ndcg@200 |
|
|
- cosine_mrr@1 |
|
|
- cosine_mrr@20 |
|
|
- cosine_mrr@50 |
|
|
- cosine_mrr@100 |
|
|
- cosine_mrr@150 |
|
|
- cosine_mrr@200 |
|
|
- cosine_map@1 |
|
|
- cosine_map@20 |
|
|
- cosine_map@50 |
|
|
- cosine_map@100 |
|
|
- cosine_map@150 |
|
|
- cosine_map@200 |
|
|
- cosine_map@500 |
|
|
model-index: |
|
|
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base |
|
|
results: |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full en |
|
|
type: full_en |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9904761904761905 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5133333333333332 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.3165714285714285 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.18857142857142858 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.13396825396825396 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.10433333333333335 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.06742481608756247 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.5411228142559339 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.7397482609380314 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.8429667985290079 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.8856357375498775 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9091330295382077 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6917131025478591 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.71478335831634 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7666819432677721 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7855970749692088 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7960468614602451 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.8090476190476191 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.8090476190476191 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.8090476190476191 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.8090476190476191 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.8090476190476191 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6476190476190476 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.5561135670751935 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.5477711353289022 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.5791852239372863 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.5872469517518495 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.5908784036739082 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.5948564356607342 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full es |
|
|
type: full_es |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.12972972972972974 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.12972972972972974 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5705405405405405 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.38962162162162167 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.25140540540540546 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.19012612612612612 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.15154054054054056 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.0037413987812150314 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.38432915927625627 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.5663097940153319 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.6710180189388714 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.7443549924512646 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.7804985217049148 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.12972972972972974 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6133809590566169 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5888378318443163 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.613553130716134 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.6492700673561147 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.6672020616803231 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.12972972972972974 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.5608108108108109 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.5608108108108109 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.5608108108108109 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.5608108108108109 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.5608108108108109 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.12972972972972974 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.47928087268629077 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.4265150109477007 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.4308614258675324 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.446315567522346 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.45361884446786194 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.46587892353181215 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full de |
|
|
type: full_de |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9704433497536946 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9852216748768473 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9852216748768473 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9901477832512315 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9901477832512315 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.5120689655172413 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.3664039408866995 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.2411330049261084 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.180623973727422 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.1453448275862069 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.01108543831680986 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.3229666331805043 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.5039915991834915 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.6239950018657238 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.6837127628220585 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.724182886190782 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.5416271120841382 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5273905187096658 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.5573943264798527 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.5882759422186796 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.6082376029646045 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.510702296647636 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.5111935025343795 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.5111935025343795 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.5112378818891037 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.5112378818891037 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.2955665024630542 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.4032624181455029 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.35929856113701575 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.3633301227599498 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.3779770424201306 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.38546911827821406 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.3983960288142158 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: full zh |
|
|
type: full_zh |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6504854368932039 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9805825242718447 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9902912621359223 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6504854368932039 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.47815533980582525 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.28699029126213593 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.17563106796116504 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.12543689320388354 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.09786407766990295 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.06122803520614593 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.512665335199255 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.6880766978766553 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.8002784995071653 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.8453144636093844 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.8773140543871931 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6504854368932039 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.6531212612064398 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.6669362863744952 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7218911998936125 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7415597018345085 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7535751066625261 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6504854368932039 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7993527508090615 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7997572815533981 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7997572815533981 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7997572815533981 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7997572815533981 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6504854368932039 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.5072300500933464 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.4897274345176646 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.5196798622563865 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.5276837053538445 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.5311205359244624 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.5365056842045905 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix es |
|
|
type: mix_es |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.7243889755590224 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9609984399375975 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9797191887675507 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9937597503900156 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9958398335933437 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9973998959958398 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.7243889755590224 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.12428497139885596 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.05134685387415497 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.026214248569942804 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.017597503900156002 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.013281331253250133 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.2802961642275215 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.9183394002426764 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.9482665973305597 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.9692234356040907 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.9756023574276305 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9821892875715027 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.7243889755590224 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.8023352815755668 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.8104895152869938 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.8150081000806421 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.8162651648802736 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.8174362445077372 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.7243889755590224 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7938466413093047 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7944053350960067 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.794613049565821 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7946306448507517 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7946402095756717 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.7243889755590224 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.7324440771234734 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.734716178743038 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.7353155432601859 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.735429453970343 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.7355154445871764 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.7356208832908805 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix de |
|
|
type: mix_de |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.6697867914716589 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 0.9505980239209568 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 0.9771190847633905 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 0.9859594383775351 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 0.9921996879875195 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 0.9942797711908476 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.6697867914716589 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.12470098803952159 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.05225169006760271 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.026708268330733236 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.01798231929277171 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.01353874154966199 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.2517940717628705 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 0.9059022360894435 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 0.9474345640492287 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 0.967932050615358 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 0.9771190847633905 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 0.9807592303692148 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.6697867914716589 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.770344092734726 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.7819450345813985 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.7865455025019679 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.7883807621544129 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.7890604802329748 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.6697867914716589 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.7504302722692131 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.7513280223222801 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.7514573016845009 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.7515108675350354 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.7515238522218625 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.6697867914716589 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.6929705838065172 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.696080766802269 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.6967651580129317 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.6969258122016383 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.6969715581100935 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.6970655432634698 |
|
|
name: Cosine Map@500 |
|
|
- task: |
|
|
type: information-retrieval |
|
|
name: Information Retrieval |
|
|
dataset: |
|
|
name: mix zh |
|
|
type: mix_zh |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.19760790431617264 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_accuracy@20 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@20 |
|
|
- type: cosine_accuracy@50 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@50 |
|
|
- type: cosine_accuracy@100 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@100 |
|
|
- type: cosine_accuracy@150 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@150 |
|
|
- type: cosine_accuracy@200 |
|
|
value: 1.0 |
|
|
name: Cosine Accuracy@200 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.19760790431617264 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_precision@20 |
|
|
value: 0.15439417576703063 |
|
|
name: Cosine Precision@20 |
|
|
- type: cosine_precision@50 |
|
|
value: 0.0617576703068123 |
|
|
name: Cosine Precision@50 |
|
|
- type: cosine_precision@100 |
|
|
value: 0.03087883515340615 |
|
|
name: Cosine Precision@100 |
|
|
- type: cosine_precision@150 |
|
|
value: 0.020585890102270757 |
|
|
name: Cosine Precision@150 |
|
|
- type: cosine_precision@200 |
|
|
value: 0.015439417576703075 |
|
|
name: Cosine Precision@200 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.06371492954956293 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_recall@20 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@20 |
|
|
- type: cosine_recall@50 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@50 |
|
|
- type: cosine_recall@100 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@100 |
|
|
- type: cosine_recall@150 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@150 |
|
|
- type: cosine_recall@200 |
|
|
value: 1.0 |
|
|
name: Cosine Recall@200 |
|
|
- type: cosine_ndcg@1 |
|
|
value: 0.19760790431617264 |
|
|
name: Cosine Ndcg@1 |
|
|
- type: cosine_ndcg@20 |
|
|
value: 0.5478938300274205 |
|
|
name: Cosine Ndcg@20 |
|
|
- type: cosine_ndcg@50 |
|
|
value: 0.5478938300274205 |
|
|
name: Cosine Ndcg@50 |
|
|
- type: cosine_ndcg@100 |
|
|
value: 0.5478938300274205 |
|
|
name: Cosine Ndcg@100 |
|
|
- type: cosine_ndcg@150 |
|
|
value: 0.5478938300274205 |
|
|
name: Cosine Ndcg@150 |
|
|
- type: cosine_ndcg@200 |
|
|
value: 0.5478938300274205 |
|
|
name: Cosine Ndcg@200 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.19760790431617264 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_mrr@20 |
|
|
value: 0.4124442798779788 |
|
|
name: Cosine Mrr@20 |
|
|
- type: cosine_mrr@50 |
|
|
value: 0.4124442798779788 |
|
|
name: Cosine Mrr@50 |
|
|
- type: cosine_mrr@100 |
|
|
value: 0.4124442798779788 |
|
|
name: Cosine Mrr@100 |
|
|
- type: cosine_mrr@150 |
|
|
value: 0.4124442798779788 |
|
|
name: Cosine Mrr@150 |
|
|
- type: cosine_mrr@200 |
|
|
value: 0.4124442798779788 |
|
|
name: Cosine Mrr@200 |
|
|
- type: cosine_map@1 |
|
|
value: 0.19760790431617264 |
|
|
name: Cosine Map@1 |
|
|
- type: cosine_map@20 |
|
|
value: 0.32993583709540925 |
|
|
name: Cosine Map@20 |
|
|
- type: cosine_map@50 |
|
|
value: 0.32993583709540925 |
|
|
name: Cosine Map@50 |
|
|
- type: cosine_map@100 |
|
|
value: 0.32993583709540925 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_map@150 |
|
|
value: 0.32993583709540925 |
|
|
name: Cosine Map@150 |
|
|
- type: cosine_map@200 |
|
|
value: 0.32993583709540925 |
|
|
name: Cosine Map@200 |
|
|
- type: cosine_map@500 |
|
|
value: 0.32993583709540925 |
|
|
name: Cosine Map@500 |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 --> |
|
|
- **Maximum Sequence Length:** 512 tokens |
|
|
- **Output Dimensionality:** 768 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
- **Training Datasets:** |
|
|
- full_en |
|
|
- full_de |
|
|
- full_es |
|
|
- full_zh |
|
|
- mix |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'Volksvertreter', |
|
|
'Parlamentarier', |
|
|
'Oberbürgermeister', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 768] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Information Retrieval |
|
|
|
|
|
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` |
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
|
|
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |
|
|
|:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| |
|
|
| cosine_accuracy@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | |
|
|
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.961 | 0.9506 | 1.0 | |
|
|
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9797 | 0.9771 | 1.0 | |
|
|
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9938 | 0.986 | 1.0 | |
|
|
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9922 | 1.0 | |
|
|
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9943 | 1.0 | |
|
|
| cosine_precision@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | |
|
|
| cosine_precision@20 | 0.5133 | 0.5705 | 0.5121 | 0.4782 | 0.1243 | 0.1247 | 0.1544 | |
|
|
| cosine_precision@50 | 0.3166 | 0.3896 | 0.3664 | 0.287 | 0.0513 | 0.0523 | 0.0618 | |
|
|
| cosine_precision@100 | 0.1886 | 0.2514 | 0.2411 | 0.1756 | 0.0262 | 0.0267 | 0.0309 | |
|
|
| cosine_precision@150 | 0.134 | 0.1901 | 0.1806 | 0.1254 | 0.0176 | 0.018 | 0.0206 | |
|
|
| cosine_precision@200 | 0.1043 | 0.1515 | 0.1453 | 0.0979 | 0.0133 | 0.0135 | 0.0154 | |
|
|
| cosine_recall@1 | 0.0674 | 0.0037 | 0.0111 | 0.0612 | 0.2803 | 0.2518 | 0.0637 | |
|
|
| cosine_recall@20 | 0.5411 | 0.3843 | 0.323 | 0.5127 | 0.9183 | 0.9059 | 1.0 | |
|
|
| cosine_recall@50 | 0.7397 | 0.5663 | 0.504 | 0.6881 | 0.9483 | 0.9474 | 1.0 | |
|
|
| cosine_recall@100 | 0.843 | 0.671 | 0.624 | 0.8003 | 0.9692 | 0.9679 | 1.0 | |
|
|
| cosine_recall@150 | 0.8856 | 0.7444 | 0.6837 | 0.8453 | 0.9756 | 0.9771 | 1.0 | |
|
|
| cosine_recall@200 | 0.9091 | 0.7805 | 0.7242 | 0.8773 | 0.9822 | 0.9808 | 1.0 | |
|
|
| cosine_ndcg@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | |
|
|
| cosine_ndcg@20 | 0.6917 | 0.6134 | 0.5416 | 0.6531 | 0.8023 | 0.7703 | 0.5479 | |
|
|
| cosine_ndcg@50 | 0.7148 | 0.5888 | 0.5274 | 0.6669 | 0.8105 | 0.7819 | 0.5479 | |
|
|
| cosine_ndcg@100 | 0.7667 | 0.6136 | 0.5574 | 0.7219 | 0.815 | 0.7865 | 0.5479 | |
|
|
| cosine_ndcg@150 | 0.7856 | 0.6493 | 0.5883 | 0.7416 | 0.8163 | 0.7884 | 0.5479 | |
|
|
| **cosine_ndcg@200** | **0.796** | **0.6672** | **0.6082** | **0.7536** | **0.8174** | **0.7891** | **0.5479** | |
|
|
| cosine_mrr@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | |
|
|
| cosine_mrr@20 | 0.809 | 0.5608 | 0.5107 | 0.7994 | 0.7938 | 0.7504 | 0.4124 | |
|
|
| cosine_mrr@50 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7944 | 0.7513 | 0.4124 | |
|
|
| cosine_mrr@100 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 | |
|
|
| cosine_mrr@150 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 | |
|
|
| cosine_mrr@200 | 0.809 | 0.5608 | 0.5112 | 0.7998 | 0.7946 | 0.7515 | 0.4124 | |
|
|
| cosine_map@1 | 0.6476 | 0.1297 | 0.2956 | 0.6505 | 0.7244 | 0.6698 | 0.1976 | |
|
|
| cosine_map@20 | 0.5561 | 0.4793 | 0.4033 | 0.5072 | 0.7324 | 0.693 | 0.3299 | |
|
|
| cosine_map@50 | 0.5478 | 0.4265 | 0.3593 | 0.4897 | 0.7347 | 0.6961 | 0.3299 | |
|
|
| cosine_map@100 | 0.5792 | 0.4309 | 0.3633 | 0.5197 | 0.7353 | 0.6968 | 0.3299 | |
|
|
| cosine_map@150 | 0.5872 | 0.4463 | 0.378 | 0.5277 | 0.7354 | 0.6969 | 0.3299 | |
|
|
| cosine_map@200 | 0.5909 | 0.4536 | 0.3855 | 0.5311 | 0.7355 | 0.697 | 0.3299 | |
|
|
| cosine_map@500 | 0.5949 | 0.4659 | 0.3984 | 0.5365 | 0.7356 | 0.6971 | 0.3299 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Datasets |
|
|
<details><summary>full_en</summary> |
|
|
|
|
|
#### full_en |
|
|
|
|
|
* Dataset: full_en |
|
|
* Size: 28,880 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:-----------------------------------------|:-----------------------------------------| |
|
|
| <code>air commodore</code> | <code>flight lieutenant</code> | |
|
|
| <code>command and control officer</code> | <code>flight officer</code> | |
|
|
| <code>air commodore</code> | <code>command and control officer</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_de</summary> |
|
|
|
|
|
#### full_de |
|
|
|
|
|
* Dataset: full_de |
|
|
* Size: 23,023 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:----------------------------------|:-----------------------------------------------------| |
|
|
| <code>Staffelkommandantin</code> | <code>Kommodore</code> | |
|
|
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | |
|
|
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_es</summary> |
|
|
|
|
|
#### full_es |
|
|
|
|
|
* Dataset: full_es |
|
|
* Size: 20,724 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------|:-------------------------------------------| |
|
|
| <code>jefe de escuadrón</code> | <code>instructor</code> | |
|
|
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> | |
|
|
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>full_zh</summary> |
|
|
|
|
|
#### full_zh |
|
|
|
|
|
* Dataset: full_zh |
|
|
* Size: 30,401 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------|:---------------------| |
|
|
| <code>技术总监</code> | <code>技术和运营总监</code> | |
|
|
| <code>技术总监</code> | <code>技术主管</code> | |
|
|
| <code>技术总监</code> | <code>技术艺术总监</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
<details><summary>mix</summary> |
|
|
|
|
|
#### mix |
|
|
|
|
|
* Dataset: mix |
|
|
* Size: 21,760 training samples |
|
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | anchor | positive | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
|
| type | string | string | |
|
|
| details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | |
|
|
* Samples: |
|
|
| anchor | positive | |
|
|
|:------------------------------------------|:----------------------------------------------------------------| |
|
|
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> | |
|
|
| <code>head of technical</code> | <code>directora técnica</code> | |
|
|
| <code>head of technical department</code> | <code>技术艺术总监</code> | |
|
|
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: |
|
|
```json |
|
|
{'guide': SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} |
|
|
``` |
|
|
</details> |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `gradient_accumulation_steps`: 2 |
|
|
- `num_train_epochs`: 5 |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `log_on_each_node`: False |
|
|
- `fp16`: True |
|
|
- `dataloader_num_workers`: 4 |
|
|
- `ddp_find_unused_parameters`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 128 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 2 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 5 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.05 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: False |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: True |
|
|
- `dataloader_num_workers`: 4 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `tp_size`: 0 |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: True |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |
|
|
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| |
|
|
| -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 | |
|
|
| 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - | |
|
|
| 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - | |
|
|
| 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 | |
|
|
| 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - | |
|
|
| 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 | |
|
|
| 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - | |
|
|
| 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 | |
|
|
| 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - | |
|
|
| 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 | |
|
|
| 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - | |
|
|
| 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 | |
|
|
| 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - | |
|
|
| 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 | |
|
|
| 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - | |
|
|
| 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 | |
|
|
| 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - | |
|
|
| 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 | |
|
|
| 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - | |
|
|
| 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 | |
|
|
| 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - | |
|
|
| 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 | |
|
|
| 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - | |
|
|
| 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 | |
|
|
| 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - | |
|
|
| 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 | |
|
|
| 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - | |
|
|
| 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 | |
|
|
| 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - | |
|
|
| 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 | |
|
|
| 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - | |
|
|
| 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 | |
|
|
| 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - | |
|
|
| 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 | |
|
|
| 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - | |
|
|
| 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 | |
|
|
| 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - | |
|
|
| 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 | |
|
|
| 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - | |
|
|
| 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 | |
|
|
| 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - | |
|
|
| 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.11 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.51.2 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.6.0 |
|
|
- Datasets: 3.5.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
#### GISTEmbedLoss |
|
|
```bibtex |
|
|
@misc{solatorio2024gistembed, |
|
|
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, |
|
|
author={Aivin V. Solatorio}, |
|
|
year={2024}, |
|
|
eprint={2402.16829}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.LG} |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |