Spaces:
Running
Running
File size: 10,090 Bytes
9455ec6 fb6ca91 9455ec6 06ed069 9455ec6 c9b451d 97fbbe3 9455ec6 97fbbe3 d88cede fb6ca91 6f155ab fb6ca91 d88cede fb6ca91 97fbbe3 9455ec6 6f155ab 9455ec6 d88cede 9455ec6 d88cede 9455ec6 fb6ca91 9455ec6 06ed069 fb6ca91 9455ec6 fb6ca91 9455ec6 188cf42 fb6ca91 9455ec6 fb6ca91 9455ec6 188cf42 fb6ca91 9455ec6 fb6ca91 9455ec6 fb6ca91 9455ec6 d88cede 9455ec6 fb6ca91 9455ec6 d88cede 9455ec6 9696d75 9455ec6 d88cede 97fbbe3 d88cede 30c7366 9455ec6 d88cede fb6ca91 9455ec6 d88cede c9b451d 97fbbe3 9455ec6 fb6ca91 97fbbe3 9455ec6 fb6ca91 9455ec6 97fbbe3 9455ec6 fb6ca91 9455ec6 d88cede 9455ec6 d88cede 776c727 9455ec6 6f155ab 9455ec6 d88cede 9455ec6 d88cede 9455ec6 57f0f2b 9455ec6 97fbbe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import tempfile
from statsforecast import StatsForecast
from statsforecast.models import (
HistoricAverage,
Naive,
SeasonalNaive,
WindowAverage,
SeasonalWindowAverage,
AutoETS,
AutoARIMA
)
from utilsforecast.evaluation import evaluate
from utilsforecast.losses import *
# Function to load and process uploaded CSV
def load_data(file):
if file is None:
return None, "Please upload a CSV file"
try:
df = pd.read_csv(file)
required_cols = ['unique_id', 'ds', 'y']
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
return None, f"Missing required columns: {', '.join(missing_cols)}"
df['ds'] = pd.to_datetime(df['ds'])
df = df.sort_values(['unique_id', 'ds'])
return df, "Data loaded successfully!"
except Exception as e:
return None, f"Error loading data: {str(e)}"
# Function to generate and return a plot
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results"):
plt.figure(figsize=(10, 6))
unique_ids = forecast_df['unique_id'].unique()
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
for unique_id in unique_ids:
original_data = original_df[original_df['unique_id'] == unique_id]
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
for col in forecast_cols:
if col in forecast_data.columns:
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
plt.title(title)
plt.xlabel('Date')
plt.ylabel('Value')
plt.legend()
plt.grid(True)
fig = plt.gcf()
return fig
# Function to create a plot for future forecasts
def create_future_forecast_plot(forecast_df, original_df):
plt.figure(figsize=(10, 6))
unique_ids = forecast_df['unique_id'].unique()
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
for unique_id in unique_ids:
# Plot historical data
original_data = original_df[original_df['unique_id'] == unique_id]
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Historical')
# Plot forecast data
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
for col in forecast_cols:
if col in forecast_data.columns:
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
plt.title('Future Forecast')
plt.xlabel('Date')
plt.ylabel('Value')
plt.legend()
plt.grid(True)
fig = plt.gcf()
return fig
# Main forecasting logic
def run_forecast(
file,
frequency,
eval_strategy,
horizon,
step_size,
num_windows,
use_historical_avg,
use_naive,
use_seasonal_naive,
seasonality,
use_window_avg,
window_size,
use_seasonal_window_avg,
seasonal_window_size,
use_autoets,
use_autoarima,
future_horizon
):
df, message = load_data(file)
if df is None:
return None, None, None, None, None, message
models = []
model_aliases = []
if use_historical_avg:
models.append(HistoricAverage(alias='historical_average'))
model_aliases.append('historical_average')
if use_naive:
models.append(Naive(alias='naive'))
model_aliases.append('naive')
if use_seasonal_naive:
models.append(SeasonalNaive(season_length=seasonality, alias='seasonal_naive'))
model_aliases.append('seasonal_naive')
if use_window_avg:
models.append(WindowAverage(window_size=window_size, alias='window_average'))
model_aliases.append('window_average')
if use_seasonal_window_avg:
models.append(SeasonalWindowAverage(season_length=seasonality, window_size=seasonal_window_size, alias='seasonal_window_average'))
model_aliases.append('seasonal_window_average')
if use_autoets:
models.append(AutoETS(alias='autoets'))
model_aliases.append('autoets')
if use_autoarima:
models.append(AutoARIMA(alias='autoarima'))
model_aliases.append('autoarima')
if not models:
return None, None, None, None, None, "Please select at least one forecasting model"
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
try:
# Run cross-validation
if eval_strategy == "Cross Validation":
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
eval_df = pd.DataFrame(evaluation).reset_index()
fig_validation = create_forecast_plot(cv_results, df, "Cross Validation Results")
else: # Fixed window
cv_results = sf.cross_validation(df=df, h=horizon, step_size=10, n_windows=1) # any step size for 1 window
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
eval_df = pd.DataFrame(evaluation).reset_index()
fig_validation = create_forecast_plot(cv_results, df, "Fixed Window Validation Results")
# Generate future forecasts
fitted_sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
fitted_sf.fit(df)
future_forecasts = fitted_sf.forecast(h=future_horizon)
fig_future = create_future_forecast_plot(future_forecasts, df)
return eval_df, cv_results, fig_validation, future_forecasts, fig_future, "Analysis completed successfully!"
except Exception as e:
return None, None, None, None, None, f"Error during forecasting: {str(e)}"
# Sample CSV file generation
def download_sample():
sample_data = """unique_id,ds,y
series1,2023-01-01,100
series1,2023-01-02,105
series1,2023-01-03,102
series1,2023-01-04,107
series1,2023-01-05,104
series1,2023-01-06,110
series1,2023-01-07,108
series1,2023-01-08,112
series1,2023-01-09,115
series1,2023-01-10,118
series1,2023-01-11,120
series1,2023-01-12,123
series1,2023-01-13,126
series1,2023-01-14,129
series1,2023-01-15,131
"""
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='')
temp.write(sample_data)
temp.close()
return temp.name
# Gradio interface
with gr.Blocks(title="StatsForecast Demo") as app:
gr.Markdown("# 📈 StatsForecast Demo App")
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
with gr.Row():
with gr.Column(scale=2):
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
download_btn = gr.Button("Download Sample Data")
download_output = gr.File(label="Click to download", visible=True)
download_btn.click(fn=download_sample, outputs=download_output)
with gr.Accordion("Data & Validation Settings", open=True):
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
horizon = gr.Slider(1, 100, value=10, step=1, label="Validation Horizon")
step_size = gr.Slider(1, 50, value=10, step=1, label="Step Size")
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
with gr.Accordion("Forecast Settings", open=True):
future_horizon = gr.Slider(1, 100, value=20, step=1, label="Future Forecast Horizon")
with gr.Accordion("Model Configuration", open=True):
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
use_naive = gr.Checkbox(label="Use Naive", value=True)
with gr.Row():
use_seasonal_naive = gr.Checkbox(label="Use Seasonal Naive")
seasonality = gr.Number(label="Seasonality", value=10)
with gr.Row():
use_window_avg = gr.Checkbox(label="Use Window Average")
window_size = gr.Number(label="Window Size", value=3)
with gr.Row():
use_seasonal_window_avg = gr.Checkbox(label="Use Seasonal Window Average")
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
use_autoets = gr.Checkbox(label="Use AutoETS")
use_autoarima = gr.Checkbox(label="Use AutoARIMA")
submit_btn = gr.Button("Run Forecast", variant="primary")
with gr.Column(scale=3):
message_output = gr.Textbox(label="Status Message")
with gr.Tabs() as tabs:
with gr.TabItem("Validation Results"):
eval_output = gr.Dataframe(label="Evaluation Metrics")
validation_output = gr.Dataframe(label="Validation Data")
validation_plot = gr.Plot(label="Validation Plot")
with gr.TabItem("Future Forecast"):
forecast_output = gr.Dataframe(label="Future Forecast Data")
forecast_plot = gr.Plot(label="Future Forecast Plot")
submit_btn.click(
fn=run_forecast,
inputs=[
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
use_autoets, use_autoarima, future_horizon
],
outputs=[eval_output, validation_output, validation_plot, forecast_output, forecast_plot, message_output]
)
if __name__ == "__main__":
app.launch(share=False) |